Characterization of the nitric oxide reductase from Thermus thermophilus.
نویسندگان
چکیده
Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrification by Thermus thermophilus and related bacterial species [Hedlund BP, et al. (2011) Geobiology 9(6)471-480]. In the present work, we have isolated and characterized the NO reductase (NOR) from T. thermophilus. The enzyme is a member of the cNOR family of enzymes and belongs to a phylogenetic clade that is distinct from previously examined cNORs. Like other characterized cNORs, the T. thermophilus cNOR consists of two subunits, NorB and NorC, and contains a one heme c, one Ca(2+), a low-spin heme b, and an active site consisting of a high-spin heme b and FeB. The roles of conserved residues within the cNOR family were investigated by site-directed mutagenesis. The most important and unexpected result is that the glutamic acid ligand to FeB is not essential for function. The E211A mutant retains 68% of wild-type activity. Mutagenesis data and the pattern of conserved residues suggest that there is probably not a single pathway for proton delivery from the periplasm to the active site that is shared by all cNORs, and that there may be multiple pathways within the T. thermophilus cNOR.
منابع مشابه
Parallel pathways for nitrite reduction during anaerobic growth in Thermus thermophilus.
Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase ...
متن کاملPartial and complete denitrification in Thermus thermophilus: lessons from genome drafts.
We have obtained draft genomic sequences of PD (partial denitrificant) and CD (complete denitrificant) strains of Thermus thermophilus. Their genomes are similar in size to that of the aerobic strains sequenced to date and probably contain a similar megaplasmid. In the CD strain, the genes encoding a putative cytochrome cd1 Nir (nitrite reductase) and ancillary proteins were clustered with a cy...
متن کاملTransferable denitrification capability of Thermus thermophilus.
Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acc...
متن کاملA third subunit in ancestral cytochrome c-dependent nitric oxide reductases.
Reduction of NO to N2O by denitrifiying bacteria is catalyzed either by a monomeric quinol-nitric oxide reductase (qNor) or by a heterodimeric cytochrome c-dependent nitric oxide reductase (cNor). In ancient thermophilic bacteria belonging to the Thermales and Aquificales phylogenetic groups, the cluster encoding the cNor includes a small third gene (norH), in addition to those encoding homolog...
متن کاملHierarchical Control of Nitrite Respiration by Transcription Factors Encoded within Mobile Gene Clusters of Thermus thermophilus
Denitrification in Thermus thermophilus is encoded by the nitrate respiration conjugative element (NCE) and nitrite and nitric oxide respiration (nic) gene clusters. A tight coordination of each cluster's expression is required to maximize anaerobic growth, and to avoid toxicity by intermediates, especially nitric oxides (NO). Here, we study the control of the nitrite reductases (Nir) and NO re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 31 شماره
صفحات -
تاریخ انتشار 2013